mercredi, février 16, 2011

Dooyeweerd: Retrocipations (Kinetic>Spatial)

The directly founded, but complex structure of the spatial analogy in the aspect of movement.
______________
De rechtstreeks gefundeerde, maar gecompliceerde structuur der ruimte-analogie in den modalen zin der beweging.
______________
Structair dìreach-stèite, ach casta, analoid spàis ann an raon na gluaiseachd.
______________
Click on image to enlarge
1) Kinematic space is an example of a complex retrocipation founded directly in its ultimate substratum. 
1) Als voorbeeld van een gecompliceerde, maar rechtstreeks gefundeerde, retrocipatie geven wij de bewegingsruimte.
1) Mar bhall-sampaill de ais-bhrath a tha an dà chuid casta agus stèite du dìreach na fho-shreath deireannach, tha rùm gluaiseach (spàs cineamàtach) againn.
_________________
2) It is directly founded in the original meaning-nucleus of space because it is a spatial analogy in the modal meaning of pure movement
2) Zij is inderdaad, als ruimte-analogie in den modalen zin der beweging, rechtstreeks in de originaire zin-kern der ruimte gefundeerd.
2) Mar analoid spàsail am broinn ciall modalach na gluaiseachd fìor-ghlan [is e sin, am broinn raon-lagha na gluaiseachd], tha an t-ais-bhrath seo bonntaichte gu dìreach ann an niùclas-cèille tùsail an spàis
_________________
3) ['New Critique' English:] But its structure is not simple since implicitly it refers back to the retrocipatory moment of dimensionality in the original meaning of space. 
3) [NC English with FMF gloss:] But its structure is not simple since implicitly it refers back to the retrocipatory moment of dimensionality [i.e. "number"] in the original meaning [i.e the law-sphere] of space. [FMF: To explain this another way - The"space" retrocipation found in the law-sphere of "movement" is SIMPLE in the sense that it is founded in the immediately prior law-sphere of "space". Yet a structural COMPLICATION arises since the law-sphere of "space" contains in turn a retrocipation (namely that of "number" or "dimensionality") which is obviously founded in the law-sphere immediately prior to it, i.e. that of "number". Thus we discover a law that while the structure of a retrocipation of course reflects the law-sphere in which it is founded (not to be confused with the law-sphere in which it is found), it moreover reflects all law-spheres prior to that in which it is founded.]
3) Maar ze is toch niet van enkelvoudige structuur. Immers zij wijst implicite terug naar het retrocipeerend zin-moment der dimensionaliteit in den originairen modalen ruimte-zin.
3) Ach a dh'aindeoin 's gu bheil an t-ais-bhrath seo bonntaichte gu dìreach ann an raon-lagha an spàis, chan eil structair sìmplidh aige. Oir tha buaidh air cuideachd aig mòmaid ais-bhrathail na h-àireamhachd a ghabhas a lorg ann an raon-lagh an spàis.
_________________
4) ['New Critique' English:] This implicit reference is expressed in the retrocipatory moment of the direction of movement, implied in kinematic space as a modal retrocipation. The direction of movement, in its turn, is founded in a dimension as an arithmetical analogy in the original meaning of space.
4) [NC English with FMF gloss:] This implicit reference [of the spatial retrocipation in the law-sphere of movement back to the numerical retrocipation (here called "dimensionality") in the law-sphere of space] is expressed in the retrocipatory moment of the direction of movement [in time], implied in kinematic space as a modal retrocipation. The direction of movement, in its turn, is founded in a dimension [numerical retrocipation] as an arithmetical analogy in the original meaning of space.
4) En deze bewegingsrichting is in het modale verband van den originairen bewegingszin zelve weer gefundeerd in de bewegingsimpuls als getals-analogie in den zin der beweging, welke primair naar de ruimtelijke grootte terugwijst en in den tijd der bewegingsruimte fungeert.
4) Agus tha a' bhuaidh a tha seo ga cur an cèill mar àird-sithidh no taobh-siubhail ann an tìm, oir chìthear gu bheil an seagh seo fillte am broinn "spàis chineamàtaich" mar ais-bhrath. Agus tha ais-bhrath an àird-sithidh fhèin seo bonntaichte ann an ais-bhrath uimhreachail (a ghabhas a thuigsinn mar tomhas) ann an raon-lagh an spàis.
(Herman Dooyeweerd, New Critique of Theoretical Thought, Vol II/ Part I/ Chapt 2/§6 p 165 [WdW Deel 2 §5 p 108])