jeudi, décembre 05, 2013

Sarfati: ATP synthase


Design in living organisms (motors: ATP synthase) by 

Diagram: Bacterial flagellum with rotary motor, after Ref.1. (from The Bacterial Flagellum,<www.arn.org/docs/mm/flagellum_all.htm>)
In our everyday experience, we can usually tell whether something has been designed. The main evidence is high information content. The information content of any arrangement is the size, in bits, of the shortest algorithm required to generate that arrangement. This means that repetitive structures, like crystals, have a low information content, because all that is needed is to specify a few positions, then the instructions ‘more of the same’. The difference between a crystal and an enzyme or DNA is like the difference between a book containing nothing but ABCD repeated and a book of Shakespeare.
On a practical level, the information specifies the many parts needed to make machines work. Often, the removal of one part can disrupt the whole machine. Biochemist Michael Behe, in his book Darwin’s Black Box(right), calls this irreducible complexity.1 He gives the example of a very simple machine: a mousetrap. This would not work without a platform, holding bar, spring, hammer and catch, all in the right place. The thrust of Behe’s book is that many structures in living organisms show irreducible complexity, far in excess of a mousetrap or indeed any man-made machine. 
Read full article HERE
PDF Download of article HERE
__________________________________
SEE ALSO -
ATP synthase: majestic molecular machine made by a mastermind

Figure 1. The whole ATP synthase machine with individually manufactured protein subunits each labelled with Greek letters. H+ ions (protons) flow through a special tunnel in ATP synthase, as the arrow indicates. This induces mechanical motion, forcing the axle and base to spin together like a turbine. Nearly 100% of the spinning momentum is converted to chemical energy in the formation of ATP molecules! Three ATPs are produced for every 10 protons.
(Adapted from Kanehisa Laboratories, <www.genome.jp/kegg>)
Life depends on an incredible enzyme called ATP synthase, the world’s tiniest rotary motor.1 This tiny protein complex makes an energy-rich compound, ATP (adenosine triphosphate). Each of the human body’s 14 trillion cells performs this reaction about a million times per minute. Over half a body weight of ATP is made and consumed every day!

Read full article HERE
______________________________